If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-24y-10=0
a = 1; b = -24; c = -10;
Δ = b2-4ac
Δ = -242-4·1·(-10)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{154}}{2*1}=\frac{24-2\sqrt{154}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{154}}{2*1}=\frac{24+2\sqrt{154}}{2} $
| 5a−9=3+a | | Y^2-10y-10=0 | | 2x^2+2x=6400 | | s=4+0.75s | | -3+u=6 | | 4x2-17-15=0 | | 4x^2+70x-74=0 | | 2n(9n^2-n^2)=0 | | 5x−8+((6x−(3(x+8)+6))=6(x+5) | | 2n(9n4-n4)=0 | | 5x-4(x+2)=8-(2-5x | | (x+1x)/x=(2x+12)/2 | | 3x-5/2=21/2 | | x3+-15x+4=0 | | x3+3=300 | | 5/11x-1/5=2 | | 18-(2a-12)=8a-1 | | 7(x-2)=2x+7 | | 48/64=x/124 | | 21t=-16t^2+40t+5 | | .45x+.1x+.2x=1 | | (k)+(k+30)+(k+70)=106 | | Y+6=-1/2x+8 | | 3/2x-6=8+2x | | 3/2x+6=8+2x | | (4x-55)+(x+5)=(7x-130) | | 3/2-6=8+2x | | (8x+5)+(4x-5)=(11x+10) | | 2−2s=4/3+s+13 | | 16z+16+3=0 | | 9x+3=7(2x-1) | | 3x+4x+2x+x=-1+3 |